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ABSTRACT: Molecular docking, classification techniques, and 3D-QSAR
CoMSIA were combined in a multistep framework with the ultimate goal of
identifying potent pyrimidine-urea inhibitors of TNF-α production. Using the
crystal structure of p38α, all the compounds were docked into the enzyme
active site. The docking pose of each compound was subsequently used in a
receptor-based alignment for the generation of the CoMSIA fields. “Active”
and “inactive” compounds were used to build a Random Tree classification
model using the docking score and the CoMSIA fields as input parameters.
Domain of applicability indicated the compounds for which activity
estimations can be accepted with confidence. For the active compounds, a
3D-QSAR CoMSIA model was subsequently built to accurately estimate the
IC50 values. This novel multistep framework gives insight into the structural
characteristics that affect the binding and the inhibitory activity of these
analogues on p38αMAP kinase, and it can be extended to other classes of small-molecule inhibitors. In addition, the simplicity of
the proposed approach provides expansion to its applicability such as in virtual screening procedures.

■ INTRODUCTION
Rheumatoid arthritis (RA) is a chronic autoimmune inflam-
matory disease that affects synovial joints by targeting the
synovial membrane, articular cartilage, and bones.1,2 High levels
of proinflammatory cytokines such as tumor necrosis factor
alpha (TNF-α) and interleukin-1b (IL-1b) are associated in a
variety of inflammatory diseases,3,4 such as RA, multiple
sclerosis, inflammatory bowel disease, and Crohn’s disease
(CD).5−7 The important role of TNF-α in the pathogenesis of
RA was demonstrated both in experimental animal models and
in RA patients.7−9 As a result, the blockade of TNF-α
production may lead to the development of new anti-TNF-α
therapies.10,11 They have been reported three drugs in use for
treatment that block the activity of TNF-α: Infliximab
(chimeric monoclonal antibody to human TNF), Adalimumab
(human monoclonal antibody to TNF), and Etanercept
(soluble TNF receptor construct). The pharmacological profile
of these new drugs is described in a review article.12 However,
there are some drawbacks in the therapy of RA by these drugs
including their high cost, inadequate clinical response, need of
intravenous administration and several side effects such as
increased risk of tuberculosis.12

One of the main signal transduction pathways implicated in
RA involves p38 mitogen-activated protein (MAP) kinase.13,14

There are four recognized p38 enzymes with 40−60%

structural similarity which are referred as p38α (also known
as p38), p38β, p38γ, and p38δ.15−18 It was demonstrated that
p38α regulates the expression of proinflammatory cytokines
such as TNF-α and IL-1b, and thus plays a key role in RA.19

Therefore, the inhibition of p38α MAP kinase is an attractive
target for drug development,20,21 because it would prevent the
expression of these proinflammatory cytokines and contribute
to the development of therapeutic agents to treat inflammatory
diseases such as RA.
Because of their potential therapeutic applications, several

small-molecules that serve as p38 inhibitors have been
developed.22 It has been reported that potent p38 MAP kinase
inhibitors reduce the expression of TNF-α in vitro and in vivo.
The most representative p38 inhibitor is a 4-aryl-5-pyridyli-
midazole-based inhibitor known as SB203580 (Scheme 1).23

This compound displayed oral efficacy in several models of
cytokine inhibition and inflammatory diseases. The interesting
in vivo pharmacological profile of SB203580 renders this com-
pound a prototypical standard of other p38 inhibitors. However,
into clinical trials SB203580 was characterized by several
toxicological effects.24,25 Other structural classes reported to
block cytokines activity include pyrroles, pyrimidines, pyridines,
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pyrimidones, indoles, heteroindoles, ureas, and various fused
bicyclic heterocycles.26 Several p38 inhibitors were progressed
into clinical trials due to the tremendous interest of phar-
maceutical companies in the development of agents against
chronic inflammatory diseases.27 The clinical candidate
BIRB796 (Scheme 1) exhibited subnanomolar affinity against
p38 MAP kinase and was entered phase II clinical trials.28

Unfortunately, it was halted before development because of
demonstrated liver toxicity.29

One of the major problems in rational drug discovery is the
understanding of the mode of interaction of small-molecule
inhibitors with their receptors. The elucidation of the three-
dimensional structure of p38 MAP kinase through X-ray
crystallography30,31 contributed to the understanding of key
structural characteristics that could assist in the rational design
of potent and selective p38 inhibitors. Moreover, computer-
aided drug design (CADD) through in silico techniques has
also been employed in rational drug discovery to understand
the inhibitor-receptor interactions and predict the inhibitory
activity of new compounds.32−37 Several in silico methods have
emerged as a useful tool in the identification of novel com-
pounds with improved characteristics.38−41 Different regression
or classification methods have been employed for this purpose
in an effort to minimize the time and cost associated with
identifying new leads.42−48

Previous CADD reports on p38 MAP kinase include
molecular docking and 3D-QSAR studies.49−51 In this study,
we describe a multistep framework by combining molecular
docking, 3D-QSAR CoMSIA and classification techniques
(Scheme 2) to understand the structural characteristics that
affect the binding of 51 pyrimidine-urea analogues52,53 with
p38α MAP kinase receptor. These compounds were tested as
inhibitors of TNF-α production, and two of them are
cocrystallized with p38α MAP kinase.52,53 All the compounds
were docked into the enzyme active site and the docking pose
of each compound was subsequently used in a receptor-based
alignment for the generation of the CoMSIA fields. A
classification model was then proposed with the primary
purpose of discriminating compounds into two categories,
active and inactive, by using the CoMSIA fields and the docking
score (threshold IC50 > 5 μM). Finally, a 3D-QSAR CoMSIA
model was developed that accurately estimates the IC50 values
for the active compounds. This computational workflow gives
insight into the structural characteristics that affect the binding
and the inhibitory activity of these analogues on p38α MAP
kinase.

■ MATERIALS AND METHODS
Computational Workflow. As aforementioned, a compu-

tational workflow was followed in order to study potent
pyrimidine-urea inhibitors of TNF-α production, and to predict
the inhibitory activity of newly designed analogues. The com-
putational workflow is graphically depicted in Scheme 2. The

data set of the pyrimidine-urea inhibitors was first docked into
the p38α active site for calculating the docking score. Then the
docking pose of each inhibitor was used in a receptor-based
alignment for generating the CoMSIA fields. The CoMSIA
fields along with the docking score were then used in a classi-
fication framework to separate active from inactive compounds
within the domain of applicability of the model. Finally, a 3D-
QSAR CoMSIA model was developed using the active
compounds to predict their inhibitory activity. After a thorough
validation of all undertaken steps, the outcome for a given
compound is to be either characterized as active or inactive
with a prediction of its inhibitory activity.

Data Set. For the present molecular modeling study 51
pyrimidine-urea analogues (Tables 1 and S1−S5, see
Supporting Information) were considered.52,53 These analogues
were all tested for inhibition of TNF-α production in an LPS
(LipoPolySaccharide) stimulated human monocytic (THP-1)
whole cell-based assay, under the same experimental con-
ditions.52,53 The structures of pyrimidine-urea analogues were
built using the SYBYL 8.0 molecular sketcher. All the hydrogen
atoms were added, and the structures were subsequently sub-
mitted to full energy minimization using the Conjugate Gradient
energy minimization algorithm with gradient 0.01 kcal mol−1 Å−1.
The Tripos force field54 was used for the minimization pro-
cedure with nonbonded interactions cutoff of 8.0 Å, using a
distance dependent dielectric function with dielectric constant
of 1.

Preparation of the p38α MAP Kinase File. Two high-
resolution X-ray crystal structures of the holo form p38α MAP
kinase cocrystallized with the pyrimidine-urea analogues 15
(PDB ID 2GHL, 2.10 Å X-ray resolution) and 25 (PDB ID
2GHM, 2.35 Å X-ray resolution) were considered to examine

Scheme 1. Chemical Structures of SB203580 and BIRB796

Scheme 2. Computational Workflow
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which complex was suitable for the molecular docking
procedure.52,53 It is well-known that proteins are flexible and
can occupy different conformations upon the binding of small-
molecule inhibitors because of induced fit effects. However, no
significant conformational differences were observed on the
two crystal structures. The crystal structure with the higher

X-ray resolution (PDB ID 2GHL) was chosen for the docking,
and was prepared using the Protein Preparation Wizard
implementation in Schrödinger suite 2009.55 The bond orders
were assigned, all the hydrogen atoms were added, the disulfide
bonds were assigned and all the water molecules were deleted.
The Epik 2.0 implementation was used to predict ionization

Table 1. IC50 Values, the Class, the Predicted Class, the −log Kd, the pIC50, the Predicted pIC50, and the Residuals for the
Pyrimidine-Urea Analogues

IDa compound IC50 (μM) class predicted class −log Kd pIC50 predicted pIC50 residuals

1 5a 0.122 active active 7.380 6.914 6.747 0.167
2TS 5b 0.176 active active 8.200 6.754 6.773 −0.018
3 5c 63%b active active 6.850
4 5d 3.100 active active 7.510 5.509 5.556 −0.048
5TS 5e 3.650 active active 8.400 5.438 5.614 −0.177
6 5f 2.880 active active 8.050 5.541 5.673 −0.133
7 5g >5%b inactive inactive 6.690
8 5h 0.843 active active 6.250 6.074 6.374 −0.300
9 5i >5%b inactive inactive 5.730
10 5j 0.539 active active 6.270 6.268 6.305 −0.036
11TS 5k 3.610 active active 7.360 5.442 5.965 −0.523
12 5l 1.420 active active 7.930 5.848 5.787 0.060
13 5m >5%b inactive inactive 4.920
14TS 5n >5%b inactive inactive 4.700
15 6a 0.092 active active 8.540 7.036 7.048 −0.012
16 6b 0.135 active active 9.190 6.870 6.842 0.028
17 6c 0.718 active active 7.590 6.144 6.196 −0.052
18 6d 1.000 active active 8.840 6.000 5.693 0.307
19TS 6e >5%b inactive inactive 5.480
20 6f >5%b inactive inactive 5.940
21TS 6g 6.16 inactive active 6.800
22 6h >5%b inactive inactive 5.460
23 6i >5%b inactive inactive 5.800
24TS 6a 0.014 active active 7.450 7.854 7.649 0.204
25 6b 0.009 active active 8.280 8.046 7.695 0.351
26 6c 0.037 active active 9.630 7.432 7.447 −0.015
27 6d 0.015 active active 8.540 7.824 7.793 0.031
28TS 6e 0.236 active active 8.640 6.627 6.755 −0.128
29 6f 0.148 active active 7.820 6.830 6.937 −0.107
30 6g 0.056 active active 8.460 7.252 7.126 0.126
31 6h 0.611 active active 8.910 6.214 6.154 0.060
32TS 6i 2.070 active active 9.450 5.684 5.921 −0.237
33 6j 0.016 active active 6.830 7.796 7.847 −0.052
34 6k 0.016 active active 6.810 7.796 8.067 −0.271
35 6l 35%b inactive inactive 2.690
36TS 6m 3%b inactive inactive 5.570
37 6n 25%b inactive inactive 4.820
38 7a 0.028 active active 7.930 7.553 7.483 0.070
39 7b 0.324 active active 8.960 6.489 6.654 −0.165
40TS 7c 0.467 active active 9.450 6.331 6.209 0.121
41 7d 0.819 active active 8.920 6.087 6.114 −0.027
42 7e 0.276 active active 8.600 6.559 6.581 −0.022
43 7f 0.086 active active 7.560 7.066 7.311 −0.245
44TS 7g 0.080 active active 6.830 7.097 7.024 0.073
45 7h 0.074 active active 6.780 7.131 6.966 0.165
46 10a 0.004 active active 7.800 8.398 8.247 0.151
47TS 10b 0.030 active active 7.360 7.523 7.577 −0.054
48 10c 0.277 active active 6.670 6.558 6.571 −0.014
49 10d 1.160 active active 6.320 5.936 5.885 0.051
50TS 10e 0.119 active active 6.900 6.924 6.871 0.054
51 10f 0.016 active active 6.400 7.796 7.865 −0.069

aTS = test set. bPercentage inhibition at 10 μM.
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and tautomeric states of the ligand het groups.56,57 The
hydrogen-bonding network was optimized by reorienting the
hydroxyl groups, amide groups of Asn and Gln residues, and by
selecting appropriate states and orientations of the imidazole
ring in His residues. Finally, using the “impref utility” and
the OPLS_2005 force field,58 the hydrogen atom positions
were optimized by keeping all the heavy atoms in place. The
prepared structure was saved in PDB format and was used in
the molecular docking. To avoid any inaccuracies depending on
using different force fields, for the preparation of the protein
(OPLS_2005) and for the molecular docking (Tripos), the
prepared PDB structure was also examined using the
Biopolymer in SYBYL 8.0 molecular modeling package.59

The same combination of force fields was used successfully in a
previous work.60

Molecular Docking Procedure. The Surflex-Dock algo-
rithm in SYBYL 8.0 molecular modeling package was used for
the molecular docking procedure.61 Surflex-Dock supports a
fully automated flexible docking procedure for the ligand and
relies on the rigid-receptor approximation to treat ligand−
receptor binding.62 The algorithm utilizes an idealized active
site ligand called “protomol”, as a target to generate putative
poses of molecules. These putative poses are scored using the
Hammerhead scoring function. The scoring function contains
the dominant hydrophobic and polar contact terms as well as a
repulsive, an entropic, and a solvation terms. In this study, the
ligand-based mode was adopted to generate the “protomol”,
leaving the threshold and bloat parameters at their default
values of 0.50 and 0 Å, respectively. The docking scores are
expressed in -logKd units to represent the calculated-binding
affinities. The maximum number of poses per ligand was set
to 20. No constraints were used for the molecular docking pro-
cedure. The docking complex assumed to represent the ligand−
receptor interactions was selected based on the following three
criteria: (i) the docking score of the pose possessed the highest
docking score; (ii) its orientation of the aromatic rings of the
ligand oriented into the active site in a similar with the
cocrystallized ligands orientation; and (iii) the preservation of
four key interactions, namely the two hydrogen bonds with
Met109, the hydrogen bond with Lys53 as well as an intra-
molecular hydrogen bond.
CoMSIA Interaction Energy. CoMSIA was originally

developed by Gerhard Klebe to find the common features in
a series of small-molecule inhibitors that are important in
binding to the biologically relevant receptor.63 In CoMSIA, five
different similarity fields are calculated: steric, electrostatic,
hydrophobic, hydrogen bond donor, and hydrogen bond
acceptor. These fields cover the major contributions to ligand
binding64 and the similarity indices are calculated at regularly
spaced grid points (lattice) for the prealigned molecules using a
probe atom. The similarity fields (steric, electrostatic, hydro-
phobic, hydrogen bond donor, and hydrogen bond acceptor)
were calculated at each lattice intersection of a regularly spaced
grid of 2.0 Å. The similarity indices were calculated using the sp3

carbon as probe atom with radius 1 Å, charge +1, hydro-
phobicity +1, hydrogen bond donating +1, hydrogen bond
accepting +1. The default value of 0.3 was set for attenuation
factor α.65

Classification Model. A classification model has been
developed in order to separate active from inactive compounds
and filter out the inactive ones. As input variables for the
development of the classification model, the docking score and
the CoMSIA similarity fields, steric, electrostatic, hydrophobic,

H-bond donor and H-bond acceptor were used. Random tree
(RT) classification technique implemented in WEKA66 pro-
gram was used to discriminate between the different classes.
Decision trees represent a supervised approach to classification
with its simple structure consisting of root, nodes, branches and
leaves. The first node is a root. A decision tree is usually drawn
beginning from the root downward. Nonterminal nodes
represent tests on attributes and each node corresponds with
a certain characteristic. From each node two or more branches
grow connecting the nodes and each branch corresponds with a
range of values that give a partition of the set of values of the
given characteristic. The terminal nodes are called leaves and
reflect decision outcomes. A Random tree is a tree drawn at
random from a set of possible trees using different features at
each node. RT is a WEKA implementation of the random
decision tree algorithm. It is a decision tree with no pruning
and considering only log2(N) of descriptors in each node
(where N is a total amount of available descriptors). Random
trees can be generated efficiently and the combination of large
sets of Random trees generally leads to accurate models.67

For the validation of the developed classification model
various statistical parameters were calculated. In particular, the
proposed classification model was fully validated using the
following measurements:

=
+

precision
TP

TP FP (1)

=
+

sensitivity
TP

TP FN (2)

=
+

specificity
TN

TN FP (3)

= +
+ + +

accuracy
TP TN

TP FP FN TN (4)

where TP = true positive, FP = false positive, TN = true
negative, and FN = false negative
The confusion matrix is also given as shown below:

positive predicted negative predicted

positive observed (active) TP FN

negative observed
(inactive)

FP TN

Applicability Domain. In order for an in silico model to be
used for screening new compounds, its domain of applica-
tion37,68,69 must be defined and predictions for only those
compounds that fall into this domain may be considered
reliable. Similarity measurements were used to define the domain
of applicability of the models based on the Euclidean distances
among all the training set compounds.70 The distance of a test set
compound to its nearest neighbor in the training set was
compared to the predefined applicability domain (APD)
threshold. The prediction was considered unreliable when the
distance was higher than APD. APD was calculated as follows:

= ⟨ ⟩+ σd ZAPD (5)

Calculation of ⟨d⟩ and σ was performed as follows: First, the
average of Euclidean distances between all pairs of training
compounds was calculated. Next, the set of distances that were
lower than the average was formulated. ⟨d⟩ and σ were finally
calculated as the average and standard deviation of all distances
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included in this set. Z was an empirical cutoff value and for this
work, it was chosen equal to 0.5.70

3D-QSAR CoMSIA Model. The PLS analysis implemented
in SYBYL 8.071,72 was employed to obtain correlation between
the CoMSIA similarity fields, which were used as independent
explanatory variables, and the pIC50 values which were used as
target dependent variables. PLS was performed in two stages.
The first was the crossvalidation using the leave-one-out
method (LOO) to determine the value of the crossvalidated q2,
the crossvalidated standard error of predictions SPRESS and the
optimal number of components (ONC). In the leave-one-out
method, one molecule is omitted from the data set and the
model is derived involving the rest of the molecules and using
this model, the activity of the omitted molecule is predicted.73

The crossvalidated q2 is calculated by the following equation:

= −q 1
PRESS

TSS
2

(6)

where PRESS is the predictive error sum of squares and TSS
is the total sum of squares. The second stage was without cross-
validation and using the ONC, which were determined by the
first crossvalidation stage, to establish a CoMSIA model represent-
ing the data. The noncrossvalidated form is determined
through the noncrossvalidated (conventional) r2, the standard
error of estimate (SEE), the F value (F-ratio), and the
probability of r2. To speed up the PLS analysis and reduce the
noise, a column filtering value of 2.00 kcal mol−1 was used.
To further assess the robustness and the statistical confidence

of the derived model, bootstrap analysis for 100 runs was
performed.73 Bootstrap analysis relies on the generation of
many new data sets from the original one which are obtained by
randomly choosing samples from the original data set with
repeated selection of the same sample being allowed. The
statistical calculation is then performed on each of these
bootstrap data sets. The difference between the parameters
calculated from the original data set and the average of the
parameters calculated from the many bootstrap data sets is a
measure of the bias of the original calculations.
The CoMSIA model was assessed for its predictive ability

using the molecules of the test set not included in the
construction of the model. External validation is the most
acceptable validation method for the predictive ability of a
QSAR model, since the molecules of the test set are not
included in the training set. The external rext

2 was calculated
using the following equation:

= −
∑ − ̃

∑ − ̅

=

=
r

y y

y y
1

( )

( )
i
n

i i

i
n

i
ext

2 1
test 2

1
test

tr
2

(7)

where ntest is the number of compounds that constitute the
validation data set (test set), yt̅r is the averaged value for the
dependent variable for the training set, yi, yĩ, i = 1, ..., ntest are
the experimental values and the 3D-QSAR model predictions of
the dependent variable over the available validation set.
Y-randomization test also ensures the robustness and the

statistical significance of a 3D-QSAR model.74 The dependent
variable vector (pIC50) is randomly shuffled and a new model is
developed using the original independent variable matrix.75−78

The derived models after several repetitions are expected to
have significant low q2 and r2 values than the ones of the
original model. This method is usually performed to eliminate
the possibility of chance correlation. If the opposite happens

then an acceptable 3D-QSAR model cannot be obtained for the
specific modeling method and data.79,80

■ RESULTS AND DISCUSSION
The previous mentioned computational workflow (Scheme 2)
was implemented in order to study the data set of the 51
pyrimidine-urea inhibitors of TNF-α production. In the
following sections, the computational workflow is described
in detail.

Molecular Docking on Pyrimidine−Urea Inhibitors.
Molecular docking was conducted on all the 51 pyrimidine-
urea analogues using the molecular docking algorithm
Surflex-Dock. The docking scores (−log Kd) are reported
in Table 1. No correlation was found between the docking
score and the IC50 values. The molecular docking results are
described below.

Examination of p38α Active Site. Enzymes in MAP
kinase family are characterized by two domains which are
separated by a conserved catalytic channel. The small
N-terminal domain consists mainly of β-sheets, while the large
C-terminal domain consists mostly of α-helices. The N-terminal
domain creates a deep binding pocket for the adenine ring of
ATP. The C-terminal domain contains the phosphorylation lip
which is located at the opening of the channel. The phosphate
groups of ATP bind near the phosphorylation lip, and the
γ-phosphate group interacts with the residues of the C-terminal
domain. Near the same area the substrate also binds to initiate
the kinase reaction.30,81

As aforementioned, two X-ray crystal structures are available
for the analogues 15 (PDB ID 2GHL, 2.10 Å X-ray resolution)
and 25 (PDB ID 2GHM, 2.35 Å X-ray resolution) with the
mutated p38α. The mutated p38α is a double mutant (S180A,
Y182F) of murine p38α. The mutant enzyme cannot be
phosphorylated and, therefore, it is not competent for
activation.52,53 However, those residues are not included
among the active site residues (SF1a, see Supporting
Information) and, therefore, do not affect the molecular
docking calculation. Since crystallography is a strong
experimental evidence for the binding mode of those analogues,
the cocrystallized with the studied analogues enzyme was used
for the molecular docking. Proteins can exhibit induced fit
effects during the binding of a ligand, in which the protein
conformation changes significantly. The conformational differ-
ences caused by this effect can be observed when more than
one cocrystallized complex is available. The two crystal
structures were aligned in order to examine if they differ
appreciably in conformation. For the alignment all the residues
were used and the rmsd value was 1.240 Å. The low rmsd value
designates that there are no significant conformational
differences on the two crystal structures. The side chains of
the active site residues (Val30, Val38, Ala51, Lys53, Leu75,
Ile84, Leu86, Leu104, Thr106, Leu108, Met109, Ala157, and
Leu167) do not appreciably differ in conformation (SF1a, see
Supporting Information), and the two crystallographic ligands
can fit into both active sites without significant steric clashes
(SF1b, Supporting Information). Thus, the crystal structure
with PDB ID 2GHL, which possesses the higher X-ray
resolution, was chosen for the molecular docking.

Test of the Surflex-Dock Algorithm. According to the
crystal structure of pyrimidine-urea 15 with the mutated p38α
(PDB ID 2GHL) the 2-aminopyrimidine functionality parti-
cipates into two hydrogen bonds with the backbone of Met109
residue of the ATP-binding pocket. The N-4-MeO-Phenyl
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group is accommodated in the well-defined hydrophobic
pocket, which consists of residues, such as Leu75, Leu86,
Leu104, and Thr106. The N′-2-chlorophenyl group is oriented
toward the solvent exposed residues of the pocket. It is
noteworthy that the conformation of the urea allows for the N′-
urea to participate into an intramolecular hydrogen bonding
with the nitrogen atom at the three position of the pyrimidine
ring. This interaction creates a pseudobicyclic structure for
these compounds and gives them rigidity.52 The second
pyrimidine-urea 25 (PDB ID 2GHM) contains an N′-2-
chlorobenzyl group instead of the N′-2-chlorophenyl group in
the analogue 15. The orientation and the interactions of the
analogue 25 are identical to the ones of 15, with the exception
that the carbonyl moiety of urea interacts with the amino group
of Lys53 unlike to the one of the analogue 15.53 The two
crystallographic analogues 15 and 25 were docked into the
active site of p38α in order to examine if Surflex-Dock is able to
reproduce the crystallographic binding mode (interactions,
conformation, and orientation). Surflex-Dock successfully
reproduces the crystallographic binding mode for both
analogues (SF2 and SF3, for detailed discussion see Supporting
Information).
Docking of the Pyrimidine-Urea Analogues. After

successful reproduction of the crystallographic binding mode
by Surflex-Dock all the pyrimidine-urea analogues were docked
into the active site of p38α. The aim was to examine if all the
analogues are docked into the active site of p38α in a similar
with the crystallographic binding mode. The attention has been
focused on the most characteristic receptor−ligand interactions
of the most active analogue 46 (SF 4). The predicted by
Surflex-Dock binding mode for the analogue 46 shows that the
orientation and the conformation of this analogue is similar to
the one of the crystallographic analogues 15 and 25. The N-4-
F-Phenyl group is accommodated in the hydrophobic pocket
and interacts with the residues Leu75, Leu86, Leu104, and
Thr106. The N′-methylpyridine group is oriented toward the
solvent exposed area and interacts with the residues Tyr35 and
Asp168. The 2-aminopyrimidine functionality participates into
two hydrogen bonds with the backbone of Met109 residue of
the ATP-binding pocket and the carbonyl moiety of urea
interacts with the amino group of Lys53. The intramolecular
hydrogen bond of the N′-urea NH with the nitrogen atom at
the three position of the pyrimidine ring is also observed.
Additionally, a hydrogen bond of the nitrogen atom of the
pyridine ring with the backbone NH group of Ser32 is
observed. It seems that this hydrogen bond contributes to the
tight binding of the 4-substituted analogue 46, because the
corresponding 2-substituted analogue 47, in which this
hydrogen bond is not observed, is about 7-fold less active
than the analogue 46 (Tables 1 and S5). By comparing the
bioactivity of the analogues 46 and 25 with the analogue 15
indicates that a methylene group between the N′-NH and the
pyridine or the 2-chlorophenyl group increases the inhibitory
activity. This might be due to the extra flexibility that gives
the methylene group to the aromatic rings so they are
accommodated more favorably toward the solvent exposed area
of the binding pocket. All the pyrimidine-urea analogues were
docked into the active site of p38α with a similar orientation
and conformation. In most of the cases the three hydrogen
bonds with Met109 and Lys53 were also observed.
Data Set Alignment and Atomic Charges. In the

CoMSIA analysis, bioactive conformation and alignment rule
selection are two important factors to construct a reliable

model. The docking pose of each analogue was used in a
receptor-based alignment to calculate the CoMSIA fields. The
most important parameter in 3D-QSAR is the alignment of the
individual molecules since their fields are computed based on a
3D lattice. Properly aligned molecules have a comparable
conformation and a similar orientation in Cartesian space.
Molecular docking into the active site of the p38α has the
advantage of reducing the uncertainty about the bioactive
conformation by adjusting the orientation and conformation of
the molecules based on the interactions with the active site.
The most active analogue 46 was used as a template molecule
for the alignment using 11 atoms (SF 5a) that are common in
all analogues. A rigid-body atom-by-atom superimposition of
one molecule onto another was performed using the utility
“Align database” available in SYBYL 8.0. The results of the
alignment are depicted in SF 5b.
Atomic charges for the aligned molecules were calculated

using the Gasteiger-Hückel method, which is a combination of
two other charge computational methods: the Gasteiger-
Marsili82 method to calculate the σ component of the atomic
charge and the Hückel83 method to calculate the π component
of the atomic charge. The total charge is the sum of the charges
calculated by the two methods. The aligned molecules were
then used for the calculation of the CoMSIA fields.

Classification Model. For the development of the
classification and 3D-QSAR CoMSIA models the available
small molecules (51 pyrimidine-urea analogues) were separated
into two independent sets, “actives” and “inactives”. The cutoff
value for the discrimination between “actives” and “inactives”
was set to IC50 > 5 μM. The initial data set was split into a
training and test set. The separation of the data set into training
and test set was performed randomly.84 The training set was
used for the development of the models reported in this study.
The test set was used to get an unbiased estimation of the
predictive ability of the developed models (classification and
3D-QSAR CoMSIA models). A commonly used ratio of training
to test set (70:30) was adopted.85 The training set contains 37
compounds (29 “actives” and 8 “inactives”) and the test set 14
compounds (10 “actives” and 4 “inactives”) as shown in Table 1.
After the classification model was trained, prediction on the

activity of test compounds was performed. The experimental
values and the predictions for both training and test examples
are presented in Table 1. The confusion matrix for the
crossvalidation method and model predictions on the external
test set, are presented in Tables 2 and 3.86,87 The performance

of the model was evaluated based on validation measurements
described in the Materials and Methods section. The
significance, accuracy and robustness of the model are
illustrated by the corresponding statistics. In particular, the

Table 2. Confusion Matrix (Training Set, 10-Fold Cross-
Validation) Random Trees

positive predicted negative predicted

positive observed (active) 29 0
negative observed (inactive) 1 7

Table 3. Confusion Matrix (Test Set) Random Trees

positive predicted negative predicted

positive observed (active) 10 0
negative observed (inactive) 1 3
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application of the 10-fold crossvalidation method produced the
following statistics: precision = 97%, sensitivity = 100%,
specificity = 88%. By applying the model to the external test
set, the following statistical results were obtained: precision =
91%, sensitivity = 100%, and specificity = 75%. The statistical
results are summarized in Table 4.

The applicability domain was defined for the compounds
that constitute the test set as described in the previous section.
Since all validation compounds fell inside the domain of
applicability, all model predictions for the external test set can
be considered reliable (Table 5).

Moreover, the classification technique gives insight into the
model by visualizing the Random Tree. The visual inspection of
the Random Tree helps in the analysis and interpretation of the
data structure, the existence of cluster and outliers, the
relationship between samples and the influence of each
variable. The graphical representation of the Random Tree
for the data set is presented in Figure 1.

The first classification on whether the compound is
characterized as active or inactive was achieved by the

classification model. The next step was the development of
the 3D-QSAR CoMSIA model using the compounds that were
characterized as “actives” by the classification model. The aim
was to establish a reliable CoMSIA model that could be used
for predicting the inhibitory activity (IC50 values) of the
compounds.

3D-QSAR CoMSIA Model. As aforementioned, a receptor-
based alignment was used for the generation of the CoMSIA
model based on the compounds which were characterized as
“actives” by the classification model. The molecules possessing
percentage inhibition of TNF-α production in the initial
publication were excluded from the CoMSIA model. The
separation of the data set into training and test set was
performed randomly as described in previous section. The
training set consists of 28 molecules and the test set consists of
10 molecules (Table 1). The Partial Least Squares (PLS)
analysis was used for deriving the relationships among the
CoMSIA fields and the inhibitory activity (IC50 values).71,72

The 3D-QSAR CoMSIA model was derived using the standard
implementation in SYBYL 8.0 molecular modeling package.88

The IC50 values were converted to the pIC50 scale (−log IC50).
CoMSIA Analysis. CoMSIA models were generated using

the combination of the following similarity fields: steric,
electrostatic, hydrophobic, H-bond donor and H-bond accept-
or.63 These fields illustrate the various properties into spatial
locations where they play important roles in determining the
inhibitory activity. The best CoMSIA model was derived using
the steric, electrostatic, and H-bond acceptor fields (Table 6).

An ONC of four corresponds to the highest crossvalidated q2 of
0.813 and the lowest SPRESS of 0.376. A non-cross-validated r2 of
0.964, a SEE of 0.165, and an F value of 154.8 with zero
probability of r2 show a good statistical correlation between the
predicted and the experimental pIC50 values for the non-
crossvalidated form of the CoMSIA model. Figure 2 represents
the relationship between the predicted and the experimental
pIC50 values. The CoMSIA analysis shows that the relative field
contributions are 56.2%, 8.6%, and 35.3% for steric, electro-
static, and H-bond acceptor fields, respectively.

Validation of the Model. The robustness and the
statistical confidence of the derived model were examined
using the bootstrap validation method for 100 runs. This
method produced an rbs

2 of 0.971 ± 0.010 indicating the
statistical validity of the CoMSIA model. The higher average
value of the rbs

2 is a demonstration of the robustness and the

Table 4. Specificity, Sensitivity, Precision, and Accuracy
Statistics (Random Trees)

specificity sensitivity precision accuracy

cross-validation 0.88 1.00 0.97 0.97
external validation 0.75 1.00 0.91 0.93

Table 5. Applicability Domain for the Test Set

ID compound distance (APD = 1.70)

2 5B 0.34
5 5E 0.44
11 5K 0.52
14 5N 0.88
19 6E 0.93
21 6G 0.73
24 P26A 0.40
28 P26E 0.64
32 P26I 0.72
36 P26M 0.98
40 P27C 0.73
44 P27G 0.74
47 P210B 0.54
50 P210E 0.65

Figure 1. Graphical representation of the Random Tree for the data set.

Table 6. Statistical Parameters of the CoMSIA Model

CoMSIA model

ONC 4
q2 0.813
SPRESS 0.376
r2 0.964
SEE 0.165
F (n1 = 4, n2 = 23) 154.8
prob. of r2 = 0 (n1 = 4, n2 = 23) 0.000
field contribution
Steric:Electrostatic:H-bond Acceptor 0.562:0.086:0.353
rbs

2 0.971 ± 0.010
SEEbs 0.142 ± 0.081
qY‑randomization

2 −0.956 to −0.146
rY‑randomization

2 0.215 to 0.347
rext

2 0.936
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internal predictive ability of the CoMSIA model. Y-random-
ization is a method also for testing the robustness and the
statistical significance of a QSAR model. This method was
performed to eliminate the possibility of chance correlation. In
particular, 10 random shuffles of the Y vector (pIC50 values)
gave q2 and r2 values in the ranges of −0.956 to −0.146 and
0.215 to 0.347, respectively. The negative values of q2 and the
low values of r2 indicate that the results from the CoMSIA
model were not due to chance correlation or structural
dependency of the training set.
External validation was also performed to further assess the

stability and the predictive ability of the CoMSIA model. This
validation was performed using 10 molecules not included in
the development of the model. The predicted pIC50 values are
in correlation with the experimental ones within the tolerable
error range (Figure 2). The external rext

2 has a value of 0.936
upholding the good correlation between predicted and
experimental pIC50 values. The high value of the external rext

2

of the COMSIA model derived from the receptor-based
alignment suggests that the receptor-based alignment can
effectively take into consideration the ligand−receptor
interactions and the CoMSIA model is reliable and could be
used in the design of new inhibitors of TNF-α production
within this structural motif of molecules.

An additional validation test has been carried out in order to
further assess the predictability and the applicability of the
model. The available data were randomly divided five times in a
ratio of 70:30 for training and test set, respectively. The results
are presented in Table S6 (see Supporting Information).

CoMSIA Contour Maps. The results of a CoMSIA analysis
is a set of contour maps visualizing which areas around the
molecule interact favorably or unfavorably with the receptor.
The contour maps express the relationship found between
variations in the magnitude of the similarity fields in a particular
spatial position and variations in the inhibition of TNF-α
production. The StDev*Coeff option was selected to control
the type of CoMSIA fields to be viewed. It is based on the
product of the “sigma” and “coefficients” fields and shows
where variability in the fields around the molecule explains
differences in the inhibitory activity. The default option
“contribution” was selected to control the interpretation of
the CoMSIA fields. The contour maps are essential because
they represent 3D spatial position around a molecule where
structural modifications correlate with changes in the
inhibitory activity.
The CoMSIA fields around the most active compound 46

are displayed in Figure 3. The steric interactions are
represented by green and yellow contour maps (Figure 3a),

Figure 2. Plot of the predicted pIC50 values versus experimental ones for the CoMSIA model.

Figure 3. CoMSIA StDev*Coeff contour maps around the most active compound 46: (a) for steric field (green: bulky groups are favored, yellow:
bulky groups are disfavored); (b) for electrostatic field (red: electronegative groups are favored, blue: electronegative groups are disfavored); and
(c) for H-bond acceptor field (magenta: groups with H-bond acceptor atoms are favored, white: groups with H-bond acceptor atoms are disfavored).
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where bulky groups near the green regions increase the
inhibitory activity but they cause the opposite effect near the
yellow regions. The electrostatic interactions are displayed by
red and blue contour maps (Figure 3b); where electronegative
groups near the red regions increase the inhibitory activity
whereas they decrease it near the blue regions. The H-bond
acceptor interactions are displayed by magenta and white
contour maps (Figure 3c), where groups with H-bond acceptor
atoms near the magenta regions increase the inhibitory activity
but they decrease it near the white regions.
Superimposition of the Contour Maps onto p38α

Active Site. As aforementioned, the 3D-QSAR CoMSIA
model was derived using a receptor-based alignment and it was
assumed that the CoMSIA contour maps would be in
agreement with the active site of p38α. Thus, the CoMSIA
contour maps were superimposed onto the active site of the
enzyme in an effort to examine if there is a relationship between
the CoMSIA fields and the surrounding of the ligand residues
of the active site.
The active site of p38α is mostly hydrophobic and that is in

agreement with the CoMSIA model, which gives 56.2% field
contribution to the steric field. The superimposition of the
CoMSIA steric fields around the most active compound 46
onto the active site of the enzyme is depicted in Figure 4. The
CoMSIA steric contour maps showed a green contour that
favors bulky substitutions near the N-4-F-Phenyl group (Figure 4a).
On the basis of the docking results this group is accommodated
inside the hydrophobic pocket and interacts with the residues
Leu75, Leu86, Leu104, and Thr106. It seems that the pocket is
deep enough (Figure 4b) and apparently bulkier groups at the
para position of the phenyl ring would be able to optimize the
interactions with the residues of the pocket. This can be con-
firmed by the fact that N-4-F-Phenyl 1 and N-4-MeO-Phenyl 15
analogues are 6-fold and 8-fold more potent, respectively,
than the unsubstituted N-Phenyl analogue 17. In addition, the
analogue 15 is slightly more potent than the analogue 1
because the methoxy substitution is bulkier than the fluorine
atom. Another green contour was observed near the N′-
methylpyridine group (Figure 4a). Based on the lipophilic
potential surface (Figure 4b) there is a small cavity near this
group consisting of the residues Gly31, Ser32 and Tyr35 in

which the pyridine group is accommodated. This is in
accordance with the experimental results where the N′-2-
Chlorobenzyl analogues 24 and 25 are approximately 10-fold
more potent than the corresponding N′-2-Chlorophenyl
analogues 1 and 15. Based on the CoMSIA contour maps
the N′-2-Chlorophenyl group is directed toward the yellow
contour that disfavors bulky groups and may clash with the
around residues such as Asp168. On the other hand, the
N′-2-Chlorobenzyl group is more flexible because of the
methylene group and is accommodated near the previous
mentioned small cavity. A green contour was also observed
near the methyl group of pyrimidine substitution which is
accommodated in a small hydrophobic cavity consisting of the
residues Ala157 and Leu167 (Figure 4a and 4b) indicating that
a bulkier substitution favors the inhibitory activity.
The CoMSIA H-bond acceptor contour showed a magenta

contour around the nitrogen atom of the pyridine ring which
favors the H-bond acceptor atoms. According to the docking
results a hydrogen bond was observed between that nitrogen
atom and Ser32 (Figure 5a). This is validated also by the
experimental results where the 2-substituted compound 47 is
about 7-fold less active than compound 46. Additionally,
compound 51 which has an H-bond donor atom at the para
position is 4-fold less active than compound 46. Another
magenta contour was also observed near the methyl group of
the pyrimidine substitution, which is directed toward the
exterior of the active site, suggesting that H-bond acceptor
atoms would be favorable for the inhibitory activity (Figure 5a).
This is also in agreement with the electrostatic contour maps
which showed a red contour near the same methyl group that
favors electronegative groups (Figure 3b). A white contour that
disfavors H-bond acceptor atoms is near the other methyl
group (Figure 5a) which is placed in the small hydrophobic
pocket consisting of the residues Ala157 and Leu167 (Figure 5b).
On the basis of the electrostatic contour maps electronegative
groups would also not be favorable for the inhibitory activity in
that position (Figure 3b). In accordance with the experimental
results, compounds 24 and 25 are approximately 16-fold more
active than the corresponding compounds 28 and 29 which
have an H-bond acceptor atom near the white contour. In
addition, compound 33 which has an H-bond acceptor atom

Figure 4. CoMSIA steric and hydrophobic fields around the most active compound 46 superimposed onto the active site of p38α: (a) the match of
the steric contour maps with the residues of the active site; (b) the MOLCAD lipophilic potential surface of the active site was created using the
Connolly method, where brown color denotes the most lipophilic areas and blue color the most hydrophilic.
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near the magenta contour is about 14-fold more active than the
corresponding compound 28.

■ CONCLUSIONS

The proposed computational workflow is initiated by molecular
docking that produces the receptor-based alignment and the
docking scores for the ligands using the crystal structure of
p38α MAP kinase. On the basis of the receptor-based
alignment, five different similarity CoMSIA fields are
calculated: steric, electrostatic, hydrophobic, hydrogen bond
donor, and hydrogen bond acceptor which cover the major
contributions to ligand binding. A classification framework is
then used as a filtering tool combining information from the
docking scores and the CoMSIA fields to identify active
compounds and filter out inactive compounds. Finally, the 3D-
QSAR CoMSIA model identifies the common features in the
series of small-molecule inhibitors that are important in binding
to the receptor. Because of the high predictive ability36 and
simplicity, the proposed computational workflow could be a
useful aid to the costly and time-consuming experiments for
determining the TNF-α inhibition of pyrimidine-urea ana-
logues. The two-stage approach that is proposed in this study
increases the accuracy of the produced QSAR model, since it
covers a narrower chemical space, compared to a model that
uses all the available data.85 A virtual screening procedure39,89

could be based on the proposed QSAR model. The design of
new active molecules by the insertion, deletion, or modification
of substituents on different sites of the molecule and at different
positions could therefore be guided by the proposed CoMSIA
model. The method38 can also be used to screen existing
databases or virtual combinations to identify derivatives with
desired activity. In this scenario, the classification model will be
used to screen out “inactive” compounds, while the applicability
domain will serve as a valuable tool to filter out “dissimilar”
combinations. The molecular descriptors used in QSAR
workflow encode information about the stereoelectronic effects
of the molecules and thus implicitly account for cooperative
effects between functional groups. The proposed approach
based on molecular docking, classification techniques and 3D-
QSAR CoMSIA aims to help researchers to design novel
chemistry driven molecules with desired biological activity.
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